skip to main content


Search for: All records

Creators/Authors contains: "Ibarra-Hernández, Wilfredo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the HubbardUandJparameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore theUandJparameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that LDA requires the largestUcorrection. PBE has the smallest standard deviation and itsUandJparameters are the most transferable to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction.

     
    more » « less
  2. We have combined a neural network formalism with metaheuristic structural global search algorithms to systematically screen the Mg–Ca binary system for new (meta)stable alloys. The combination of these methods allows for an efficient exploration of the potential energy surface beyond the possibility of the traditional searches based on ab initio energy evaluations. The identified pool of low-enthalpy structures was complemented with special quasirandom structures (SQS) at different stoichiometries. In addition to the only Mg–Ca phase known to form under standard synthesis conditions, C14-Mg 2 Ca, the search has uncovered several candidate materials that could be synthesized under elevated temperatures or pressures. We show that the vibrational entropy lowers the relative free energy of several phases with magnesium kagome layers: C15 and C36 Laves structures at the 2 : 1 composition and an orthorhombic oS36 structure at the 7 : 2 composition. The estimated phase transition temperatures close to the melting point leave open the possibility of synthesizing the predicted materials at high temperatures. At high pressures up to 10 GPa, two new phases at the 1 : 1 and 3 : 1 Mg : Ca stoichiometries become thermodynamically stable and should form in multi-anvil experiments. 
    more » « less